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A B S T R A C T   

The sudden outbreak of coronavirus disease (COVID-19) triggered by SARS-CoV-2 infection has created a 
terrifying situation around the world. The spike protein of SARS-CoV-2 can act as an early biomarker for COVID- 
19. Therefore, controlling the spread of COVID-19 requires a low-cost, fast-response, and sensitive monitoring 
technique of spike protein. Herein, a photoelectrochemical (PEC) immunosensor for the detection of spike 
protein was constructed using the nanobody and an Mn (II) modified graphitic carbon nitride (Mn/g-C3N4). The 
introduction of atomically dispersed Mn (II) can accelerate the effective transfer and separation of photo-
generated electron-hole pairs, which significantly boosts PEC performance of g-C3N4, thereby improving the 
detection sensitivity. As a recognition site, nanobody can achieve high-affinity binding to the spike protein, 
leading to a high sensitivity. The linear detection range of the proposed PEC immunosensor was 75 fg mL–1 to 
150 pg mL–1, and the limit of detection was calculated to be 1.22 fg mL–1. This stable and feasible PEC immu-
nosensor would be a promising diagnostic tool for sensitively detecting spike protein of SARS-CoV-2.   

1. Introduction 

The global outspread of coronavirus disease 2019 (COVID-19) has 
dramatically posted serious damage to public health [1,2]. With its 
fast-spreading speed and high mortality rate, severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) is considered to be the main 
driver of infection [3]. Currently, the SARS-CoV-2 detection methods are 
mainly divided into two categories: molecular detection of nucleic acid 
and immunological detection of antigen and antibody. As a method of 
molecular detection, reverse transcription polymerase chain reaction 
(RT-PCR) is the gold standard for detection and identification. However, 
the high detection requirements, high cost, and complexity of RT-PCR 
limit its widespread use in underdeveloped countries [4]. The immu-
noassay method provides initial screening for the presence of corre-
sponding antigen present in COVID-19 patients, which allows timely 
testing at a low cost [5]. Immunoassay is an efficient, sensitive, and 
convenient method for determining the content of analytes through 
specific recognition between antigen and antibody [6,7]. As a reverse 

transcriptase virus, the SARS-CoV-2 virus has four main proteins: spike 
(S) protein, membrane (M) protein, envelope (E) protein, and nucleo-
capsid (N) protein [8,9]. Among them, S protein can be used as a main 
antigen biomarker to diagnose COVID-19 [10,11]. In general, the se-
lection of the recognition element in immunoassays is also critical. The 
use of S protein-derived peptides, antibodies, and amino-aptamers as 
recognition elements to detect the S protein of SARS-CoV-2 has been 
reported [12–14]. 

Nanobody (Nb) is a variable domain fragment derived from the 
heavy-chain-only antibody in camels [15]. As the smallest antibody 
fragment discovered, Nb has opened the way toward diagnosis and 
treatment due to the merits of great thermal stability, orderly immobi-
lization, and high affinity [16]. Furthermore, Nb can easily recognize 
cryptic epitopes compared with conventional full-size antibodies due to 
its small size [17]. For example, Nb is orientedly immobilized to the 
surface of microcantilevers and specifically binds to a carcinoembryonic 
antigen, thereby realizing the highly selective detection of tumor 
markers [16]. Thus, Nb can be employed to design a sensitive 
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immunosensor as a specific recognition element. PEC sensing approach 
is an innovative detection method with the advantages of low back-
ground current, high sensitivity and fast detection speed, which is used 
in environmental pollutants, food safety and medical fields [18,19]. The 
label-free PEC immunosensor combines the intrinsic sensitivity of the 
PEC method and the peculiarity of specific binding with immune mol-
ecules, which can quickly and simply detect biological molecules [20]. 
When the antigen and antibody are combined, a steric hindrance effect is 
created in the detection platform of PEC immunosensor. The reduction 
of photocurrent can function as a signal output, which realizes the 
detection of the antigen. 

Making photoactive materials with outstanding photoelectric con-
version efficiency is one of the keys to improving the detection sensi-
tivity of PEC immunosensors [21,22]. Graphitic carbon nitride (g-C3N4) 
materials have sparked great interest in the construction of PEC sensors 
owing to their adjustable electronic and optical absorption properties, 
simple synthesis method, and biocompatibility [23,24]. While pristine 
g-C3N4 has some weaknesses such as rapid recombination of carriers and 
low electrons transfer ability, leading to poor PEC performance [23,25]. 
Some modification strategies such as the construction of heterojunction 
[26,27], grafting molecular or functional groups [28], and introduction 
of the metal element [29] have been implemented to boost PEC per-
formance of pristine g-C3N4. The introduction of metal element can 
accelerate the transmission of electron-hole pairs, boost the effective 
separation and enhance the visible light-harvesting, thus resulting in 
excellent PEC performance [30,31]. The introduction of Cu (I) has been 
reported to improve the visible light utilization and broaden the ab-
sorption wavelength of g-C3N4, and the constructed Cu (I)/g-C3N4-based 
PEC aptasensor has realized highly sensitive determination of bisphenol 
A [32]. Modifying single atom into the semiconductor can effectively 
improve its charge transport behavior and restrict the recombination of 
photoinduced carriers, thereby significantly enhancing PEC perfor-
mance [33,34]. Mn has been well studied in ion modification because of 
many kinds of oxidation states, and the materials modified by Mn ions 
have high conductivity and charge transfer ability [35]. Thus, the 
development of g-C3N4 photoactive materials with atomic Mn (II) 
modified can provide a possibility to construct a high-sensitivity PEC 
immunosensing platform. 

In this work, a highly sensitive label-free PEC immunosensor based 
on Mn (II) modified g-C3N4 (Mn/g-C3N4) was fabricated to detect SARS- 
CoV-2 S protein (Scheme 1). After introducing atomically dispersed Mn 
(II) into g-C3N4, the PEC performance can be improved by increasing the 
photoelectric conversion efficiency, thereby endowing the immuno-
sensor with high sensitivity. The specific recognized Nb was effectively 
immobilized on the Mn/g-C3N4electrode, enabling highly selective 
detection of S protein. Additionally, the PEC immunosensor for S protein 
has the advantages of low cost, excellent stability, and reproducibility. 

2. Experimental section 

2.1. Chemicals and reagents 

Melamine, manganous acetate (Mn(COOH)2⋅4H2O), KOH, NaOH, 
HCl, and ethanol were packaged and bought from Sinopharm Chemical 
Reagent Co., Ltd. (Shanghai, China). The above chemicals were used 
without the purification process. Phosphate buffered solution (PBS, 
6.7 mM, pH 7.4) and bovine serum albumin (BSA) were purchased from 
Hyclone Laboratories, USA. Nb and SARS-CoV-2 S protein were obtained 
from Novamab Biopharmaceuticals Co., Ltd. (Shanghai, China), and the 
specific screening and extraction procedures are described in this work 
[36]. 

2.2. Preparation of Mn/g-C3N4 

CN was synthesized by a low-temperature calcination method [37]. 
Melamine (2 g), KOH (0.56 g), and NaOH (0.2 g) were ground in an 
agate mortar and heated in a muffle furnace at 330 ◦C for 2 h with a 
temperature gradient of 5 ◦C min–1. Then, the calcined sample was 
washed with 1 M HCl solution and deionized water, and dried under 
vacuum for 12 h, which was recorded as CN. Subsequently, CN (0.46 g) 
and Mn(COOH)2⋅4H2O (0.12 g) were dissolved into deionized water 
(60 mL) continuing to stir at 60 ◦C for 15 h. After that, the resultant 
mixture was centrifuged under 8,000 rpm for 3 min and dried in a 
vacuum oven. The final powders were filled in a crucible and calcined in 
a tube furnace with a rate of 5 ◦C min–1 to 550 ◦C and maintained for 
1 h, where N2 (80 mL min− 1) acts as a protective gas. The annealed 

Scheme 1. Schematic illustration of PEC immunosensor using Mn/g-C3N4 nanomaterial for detecting SARS-CoV-2 S protein.  
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sample was dissolved into HCl solution (1 M) and stirred thoroughly, 
washed with water to neutrality, and then dried under vacuum. After 
grinding, the final product was denoted as Mn/g-C3N4. For comparison, 
the CN was calcined under the same condition only without the addition 
of manganese salt and denoted as g-C3N4. To obtain materials with 
optimal PEC performance, composites with different Mn contents were 
prepared to optimize the loading content of Mn (Fig. S1). The Mn con-
tent in the Mn/g-C3N4 obtained by the ICP test was 2.33% (Table S1). 

2.3. Fabrication of the Mn/g-C3N4 based PEC immunosensor 

Indium tin oxide (ITO) glass (resistance less than 10 ohm/sq) was 
supplied from Kaivo Optoelectronic Technology (Zhuhai, China). Before 
modification, ITO was pretreated by ultrasonically washing with 
deionized water and ethanol. The homogeneously dispersed Mn/g-C3N4 
suspension (1 mg mL− 1, 50 μL) obtained by the ultrasonic method was 
added dropwise to the conductive surface of ITO electrodes with a 
determined area of 0.5 cm2, which were remarked as Mn/g-C3N4/ITO 
after drying. Subsequently, Nb (0.406 μg mL− 1, 10 μL) was incubated on 
the Mn/g-C3N4/ITO electrode at room temperature for 12 h, then 
flushed with PBS to remove excess Nb. The resulting electrode was 
labeled as Nb/Mn/g-C3N4/ITO. Next, BSA (5 wt%, 10 μL) was added 
dropwise to the Nb/Mn/g-C3N4/ITO electrode and kept for 30 min at 
room temperature. Then the electrode was rinsed several times with PBS 
and dried, named BSA/Nb/Mn/g-C3N4/ITO. Finally, different concen-
trations of S protein (10 μL) were dropped onto the BSA/Nb/Mn/g- 
C3N4/ITO electrode for incubation of 30 min by rinsing with PBS. Then 
the obtained SP/BSA/Nb/Mn/g-C3N4/ITO electrode for subsequent PEC 
testing. 

2.4. PEC measurements 

Photocurrent and electrochemical impedance spectroscopy (EIS) 
experiments were tested on the CHI660E electrochemical workstation 
(CH Instruments Ins., Shanghai, China). The photocurrent response was 
performed in PBS by a conventional three-electrode system with a xenon 
lamp (PLS-FX300HU, Beijing Perfectlight, China) as the light source. In 

addition, EIS measurements were carried out at a frequency of 
0.1–100 kHz and without light irradiation. Impedance solution was 
prepared by uniformly mixing equimolar solutions of phosphate buffer 
(0.1 M, pH 7.0), [Fe(CN)6]3–/4– (5 mM), and KCl (0.1 M). Phosphate 
buffer was obtained by mixing 0.1 mol L− 1 Na2HPO4 and 0.1 mol L− 1 

NaH2PO4 to adjust pH 7.0. Mott-Schottky curves (~1.0 kHz, CH In-
strument) was performed by 0.5 mol L–1 Na2SO4 solution under dark 
condition. All the photocurrent measurements were operated at a po-
tential of 0 V. 

3. Results and discussion 

3.1. Structural and morphology characterization of materials 

Fig. 1a shows the XRD pattern of g-C3N4 with two peaks at 27.3◦ and 
13.1◦, corresponding to (002) plane of layer-to-layer stacking state with 
conjugated aromatic systems and (100) plane of triazine within the 
layers [38]. The similar diffraction peaks of Mn/g-C3N4 and g-C3N4 
indicate that the structure of g-C3N4 is unaffected by the low content 
intercalation of Mn. Furthermore, there are not any diffraction peaks 
shown for Mn/g-C3N4, which indicates that common compounds such as 
MnO2 and Mn2O3 are inexistent. The structures of g-C3N4 are unaffected 
by the introduction of various Mn contents (Fig. S2). FT-IR spectra 
(Fig. 1b) show that g-C3N4 and Mn/g-C3N4 display some characteristic 
peaks situated at 810 cm–1 and 1200 ~ 1700 cm–1, mainly attributed to 
the respiratory vibration of the tri-s-triazine ring and the tensile vibra-
tion of C–NHX and C––N [39]. Additionally, there is a sharp band located 
at 2177 cm–1 rooted from stretching vibrations of –––C≡N, which is 
mainly the result of hydroxide melts treatment [39]. This phenomenon 
is attributed to the loss of the terminal amino group of carbon nitride 
caused by the addition of molten salt. Likewise, the introduction of Mn 
does not significantly change the position of peak vibration, and 
Mn/g-C3N4 still maintains the intrinsic skeleton of g-C3N4. As shown in 
Fig. S3, Raman spectra of the samples were measured at the excitation 
wavelength of 532 nm. Both g-C3N4 and Mn/g-C3N4 exhibit strong 
Raman signals with comparable peak positions. The presence of the 
characteristic peak associated with Mn is also not observed in 

Fig. 1. XRD patterns (a), FT-IR spectra (b), and Mn 2p XPS spectra (f) of g-C3N4 and Mn/g-C3N4; XPS spectra of Mn/g-C3N4: (c) Survey, (d) C 1 s and (e) N 1 s.  
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Mn/g-C3N4. This indicates that the presence of Mn does not change the 
framework structure of carbon nitride, which is consistent with the 
FT-IR results. 

The XPS survey of Mn/g-C3N4 has four main elements (Fig. 1c): C, N, 
O, and Mn, indicating that Mn was successfully doped into g-C3N4. More 
concretely, two peaks at 284.5 and 288.0 eV correspond to C–C/C––C 
and N–C––N species in the C1s spectrum (Fig. 1d) [40]. The observed 
peak at 286.0 eV is attributed to the carbon connected to the amino 
group (C–NHx) and C––N [38], which echoes the result of the FT-IR 
spectra. As demonstrated in Fig. 1e, the peaks centered at 398.3, 
399.6, and 400.6 eV of the N 1 s spectrum are derived from sp2 hybrid 
aromatic C––N–C, pyrrole nitrogen N–(C)3, and quaternary nitrogen 
C–NH, respectively [41,42]. The O 1 s spectrum (Fig. S4) contains only a 
single peak of adsorbed oxygen at 531.8 eV [32], which can also confirm 
that there is no Mn–O bond, and Mn does not exist in the form of oxides. 
As illustrated in Fig. 1f, the Mn 2p spectrum of g-C3N4 only shows a noise 
line without any characteristic peak. And the Mn 2p spectrum is 
decomposed into three main peaks at 641.7, 653.2, and 646.0 eV, which 
are assigned to Mn 2p3/2, Mn 2p1/2 signals, and satellite peaks, respec-
tively. The information revealed by the Mn 2p XPS spectrum indicates 
that the valence state of Mn is identified as positive divalent [43,44]. 
The above XPS results confirm that Mn/g-C3N4 was successfully 
synthesized. 

The overall morphology of the samples was analyzed by SEM and 
TEM. As shown in Fig. 2a, c, and S5, Mn/g-C3N4 and g-C3N4 display 
similar porous layered nanosheet structures. The dispersion state of Mn 
(II) in the Mn/g-C3N4 was further identified with the aberration- 
corrected HAADF-STEM (Fig. 2b) [45]. The isolated bright spots 
belong to the presence of atomically dispersed Mn sites, implying that 
Mn (II) as a single atom is mainly dispersed on the g-C3N4 substrate [46]. 
The bright spots marked by red circles are Mn because Mn atoms have a 
higher atomic number and are heavier than C and N atoms. In addition, 

the corresponding EDS mapping images (Fig. 2d) demonstrate the 
presence of C, N, O, and Mn elements, and the specific element content is 
shown in Fig. S6. Therefore, the analysis results of XPS and 
HAADF-STEM images further demonstrate that atomically dispersing 
Mn (II) species successfully modified into g-C3N4. 

The Brunauer–Emmett–Teller (BET) method and Bar-
rett–Joyner–Halenda (BJH) analysis of g-C3N4 and Mn/g-C3N4 samples 
were performed to measure the surface area and pore-size distribution, 
respectively. Fig. 2e shows the N2 adsorption desorption isotherms, and 
the consequences exhibit that g-C3N4 and Mn/g-C3N4 are typical IV 
isotherms, which indicates the presence of mesoporous structure [47]. 
The specific surface areas of g-C3N4 and Mn/g-C3N4 are respectively 
determined as 16.78 m2 g− 1 and 22.73 m2 g− 1. Moreover, abundant 
pores can be observed in Fig. 2f. Compared with g-C3N4, the pore size of 
Mn/g-C3N4 increases, which is consistent with the results of TEM 
images. 

3.2. Optical and PEC performance 

The photoabsorption capability of g-C3N4 and Mn/g-C3N4 was per-
formed by UV–vis absorption spectra (200–800 nm). As depicted in  
Fig. 3a, by comparing the spectra of g-C3N4 and Mn/g-C3N4, Mn/g-C3N4 
presents an excellent light-harvesting capability. The maximum ab-
sorption edge of Mn/g-C3N4 occurs in a slight red shift of ~20 nm 
compared to g-C3N4, indicating that the introduction of Mn (II) increases 
the light utilization, generating amounts of electrons and holes. The 
introduced Mn forms impurity energy levels in g-C3N4, which narrows 
the forbidden band width of the doped samples, and the photogenerated 
electron-hole pairs are easier to excite, which can improve the light 
capture and electron transfer capability, thus endowing the material 
with excellent PEC performance [48]. The related M-S plots, Tauc plots, 
and schematic band structure of g-C3N4 and Mn/g-C3N4 are shown in 

Fig. 2. TEM (a, insert: HRTEM image), HAADF-STEM (b, atomically dispersed Mn is highlighted), and HRTEM (c) images of Mn/g-C3N4; EDS mapping (d) of Mn/g- 
C3N4: C (blue), N (green), and Mn (red); N2 adsorption and desorption isotherms (e) and the corresponding pore-size distribution (f) of g-C3N4 and Mn/g-C3N4. 
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Fig. S7. 
Chronoamperometric i-t curve and EIS can effectively reveal the 

conversion and separation of photoinduced carriers. Transient photo-
current of g-C3N4 and Mn/g-C3N4 was recorded at a 20 s interval of light 
off-on without the applied potential. g-C3N4 exhibits a lower photo-
current signal than Mn/g-C3N4 owing to the efficient recombination of 
photoinduced carriers (Fig. 3b). The photocurrent value of Mn/g-C3N4 
was 10 times larger compared with g-C3N4, confirming that the modi-
fication of Mn (II) can stimulate the separation of photoinduced charges, 
thereby enhancing the photocurrent response [49]. EIS spectra repre-
sent the charge transfer ability of g-C3N4 and Mn/g-C3N4. The semicircle 
demonstrates a smaller radius, and the relative material has a faster 
charge transfer speed [50]. The semicircle of Mn/g-C3N4/ITO is the 
smallest, signifying that Mn (II) enhances the charge transfer capability. 
The equivalent circuit model was calculated using ZSimpWin software 
to further verify the EIS results (Fig. 3c). Cdl, Rs, Rct, and Zw in the inset 
mean interfacial capacitance, solution resistance, charge transfer 

resistance, and Warburg impedance in solution, respectively (Table S2). 
The actual measured (dot) is well matched with the calculated (line) 
data, which shows that the fitting circuit diagram is reasonable. After 
the introduction of Mn (II), the Rct value of Mn/g-C3N4/ITO (~318.9 Ω) 
was less than that of g-C3N4/ITO (~639 Ω). The above results show that 
Mn/g-C3N4 with excellent PEC performance can provide powerful evi-
dence for the construction of PEC immunoassay platform. 

3.3. PEC immunoassay platform 

Based on Mn/g-C3N4 as a photoelectrically active material with su-
perior PEC performance, it is possible to fabricate a label-free PEC 
immunosensor for sensitively detecting S protein. The specific design 
process is shown in Fig. 4a. The detection mechanism of the proposed 
PEC immunosensor is based on the hindrance effect between the Nb and 
S protein, which inhibits the separation and transfer of carriers, resulting 
in the reduction of photocurrent signal. There is a π-π stacking 

Fig. 3. (a) UV–vis absorption spectra of g-C3N4 and Mn/g-C3N4; Photocurrent response (b) and EIS curves (c) of the prepared electrodes (dot and line represent the 
measured data and calculated results). 

Fig. 4. (a) Schematic diagram of photoinduced electron transfer of Mn/g-C3N4 in the immunosensor; (b) Photocurrent of PEC immunosensor based on BSA/Nb/Mn/ 
g-C3N4/ITO electrode with various concentrations of S protein: 0.075, 0.15, 0.75, 1.5, 4.5, 15, 40, 60, 75, 150 pg mL–1; (c) Linear plot. Data were obtained by three 
parallel measurements. 
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interaction with the conjugated heptazine structural unit of g-C3N4, 
which promotes Nb to be stably anchored to the Mn/g-C3N4 electrode 
without any modification [51]. Fig. 3b shows the photocurrent response 
of Mn/g-C3N4/ITO, Nb/Mn/g-C3N4/ITO, BSA/Nb/Mn/g-C3N4/ITO, and 
SP/BSA/Nb/Mn/g-C3N4/ITO electrode. After Nb was incubated on the 
surface of the Mn/g-C3N4/ITO electrode, the photocurrent signal grad-
ually decreased. Because the addition of Nb biomolecules hinders the 
steric effect and inhibits the electrons transfer [18]. Similarly, the effect 
of adding BSA is that the non-specific recognition sites of Nb and g-C3N4 
are blocked [52]. When S protein at a concentration of 1.5 pg mL–1 was 
immersed into BSA/Nb/Mn/g-C3N4/ITO electrode, the S protein and the 
Nb underwent a specific immunoreaction, inhibiting the transfer of 
electrons and resulting in a reduced photocurrent. Meanwhile, the 
construction process of the immunosensor was further assessed by EIS 
measurement. With the addition of Nb and BSA, the Rct gradually 
increased (503.5 Ω; 595.3 Ω), indicating that each component success-
fully modified on the electrode surface to inhibit the photoinduced 
electron migration. After the electrode was incubated with S protein, the 
impedance of SP/BSA/Nb/Mn/g-C3N4/ITO electrode further increased 
to an Rct value of 610.6 Ω. This is because the modified insulating pro-
tein on the electrode surface creates a steric hindrance to block electrons 
transfer, thereby increasing the Rct value. According to the above results, 
Mn/g-C3N4-based PEC immunosensor for quantitative sensitive detec-
tion of S protein was successfully constructed. 

The constructed PEC immunosensor was optimized with the con-
centration of Nb (0.406 μg mL–1, Fig. S8). As illustrated in Fig. 4b, the 
concentrations of S protein increased from 0.075 to 150 pg mL–1, and 
the photocurrent response shows a gradual decline. The possible reason 
is that when the concentration of S protein increases, Nb specifically 
binds to S protein to strike the immunoreaction, and then many 
immunocomplexes are enriched on the electrode surface, which reduces 
the photocurrent response. When the concentration continued to in-
crease (300, 750, 1,500, 4,500, 7,500, 10,500, 15,000 pg mL–1), the 
photocurrent tended to be saturated (Fig. S9). Therefore, the linear 
detection range was 75 fg mL–1 to 150 pg mL–1, and the upper limit of 

the concentration of the nonlinear deviation of this sensor was 
15,000 pg mL–1. From Fig. 4c, the measured photocurrent value 
exhibited a linearly decreasing trend with the logarithmic increase of S 
protein concentration. The linear equation was I (μA) = –0.173 log[CSP 
(fg mL–1)]+ 1.037 with a obtained correlation coefficient (R2) of 0.998. 
Moreover, the detection limit was calculated by the least-squares 
equation of a calibration curve to be 1.22 fg mL–1. Compared with 
some reported methods of detecting SARS-CoV-2 (Table S3), this label- 
free PEC immunosensor has achieved high-sensitivity detection of S 
protein. 

The anti-interference characteristics of the immunosensor were 
studied by the target S protein and substances that can coexist with 
saliva samples, such as ascorbic acid, L-glutamic acid, ciprofloxacin, and 
their mixtures. As shown in Fig. 5a, the selected interfering substance 
can cause no significant effect on the photocurrent signal of PEC 
immunosensor. Based on the specific experiments reported in the liter-
ature [36], it is further demonstrated that Nb can specifically and 
selectively bind to the RBD mutants in S protein of SARS-CoV-2. Fig. 5b 
shows the short-term stability of SP/BSA/Nb/Mn/g-C3N4 electrodes. 
After the light on-off irradiation test at a 20 s interval, there is no sig-
nificant change trend in the observed photocurrent signal. To evaluate 
the long-term storage stability of the immunosensor, the 
BSA/Nb/Mn/g-C3N4 electrodes incubated with S protein were stored in 
the dark at 4 ◦C (Fig. 5c). After the SP/BSA/Nb/Mn/g-C3N4 electrode 
was stored for 21 days, its photocurrent had no obvious attenuation, 
demonstrating good stability of the immunosensor platform. Fig. 5d 
displays the photocurrent on different BSA/Nb/Mn/g-C3N4/ITO elec-
trodes with the immersed 1.5 pg mL–1 S protein by the same modifica-
tion method. SP/BSA/Nb/Mn/g-C3N4 electrode shows a similar 
photocurrent response with smaller error values (RSD of 1.47%), indi-
cating the good reproducibility of this designed PEC immunosensor. The 
standard addition concentration of S protein in PBS can be calculated via 
the linear equation of the sensor to assess the feasibility of PEC immu-
nosensor. Recovery was varying from 96.9% to 101.6%, and the RSD 
value was 1.68–3.50% as displayed in Table S4. The results indicate that 

Fig. 5. (a) Selectivity of PEC immunosensor with 60 pg mL–1 S protein and 6 ng mL–1 different interference substances; (b) Short-term stability with 1.5 pg mL–1 S 
protein. (c) Long-term storage stability for the immunosensing incubated 0.75 and 135 pg mL–1 S protein; (d) Repeatability test of the PEC immunosensor with 
1.5 pg mL–1 S protein. Error bars are equal to SD (n = 3). 
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the proposed PEC immunosensor provides a sensitive platform for 
quantitatively detecting SARS-CoV-2 S protein. 

4. Conclusions 

In summary, a label-free PEC immunosensor using Mn/g-C3N4 as the 
active material and Nb as the specific recognition substrate was suc-
cessfully fabricated for the sensitive detection of SARS-CoV-2 S protein. 
The introduction of atomically dispersed Mn (II) enhances the capability 
of light capture, accelerates separation and transmission efficiency of 
photoinduced charges, and improves photocurrent response. The Mn/g- 
C3N4 with superior PEC performance was used to construct PEC 
immunosensor for detecting S protein. The introduction of Nb with high 
binding capacity can improve the selectivity of the immunosensor for S 
protein. Therefore, this immunosensor exhibited a wide linear range (75 
fg mL–1 to 150 pg mL–1), good sensitivity, selectivity, and stability. This 
work proposes a novel approach for the construction of high- 
performance PEC immunosensors and also provides a new method for 
sensitive monitoring of the COVID-19 virus. 
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